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Memory
Appears in several forms in a hierarchy of performance and capacities 
in a modern machine:

1. Individual flip-flops and counters used within a module.

2. Pipeline registers that hold the state of an instruction as it’s 
passed from one stage of the processor’s pipeline to the next.

3. Register files, groups of perhaps 16 or 32 registers, each the word 
length of the processor (e.g., 32 bits) and available to the 
programmer via the instruction set.

4. Cache, typically fast static RAM (i.e., latches) used to buffer data in 
and out of main memory.

5. Main memory, typically SDRAM, which stores data as small 
electrical charges on tiny capacitors and which must be refreshed 
constantly.

6. Non-volatile storage, e.g., hard disk, flash drive.
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The tall registers between each stage capture the state of an instruction as it 
moves through the pipeline.





The register file
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The register file is accessible to the instruction set.



Register file in the MIPS

31 registers numbered 1 to 31
Register 0 is always 0
Three ports:
1. Read ports for A and B that 

continuously report the contents of 
registers A and B

2. Write port for C with an enable.

Create a Verilog module that does this.



module RegisterFile( input clock, reset,
input [4:0] regA, regB, output [31:0] Aout, Bout,
input [4:0] regC, input writeC, input [31:0] Cin );

// Three-port register file. Registers A and B are read
// continuously, register C can be written.
// Register 0 is always 0.

reg [ 31:0 ] rf[ 1:31 ];
assign Aout = regA != 0 ? rf[ regA ] : 0;
assign Bout = regB != 0 ? rf[ regB ] : 0;

always @( posedge clock )
if ( reset )

begin
integer i;
for ( i = 1; i < 32; i = i + 1 )

rf[ i ] <= 0;
end

else
if ( writeC && regC != 0 )

rf[ regC ] <= Cin;

endmodule



Instruction and data memories
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The MIPS is a Harvard architecture with separate instruction and data memories.



Static RAM on an FPGA

Created from the 
vendor’s “IP 
library” using 
their tool to 
describe what 
you want.



Figure B.66.   A 2m x n SRAM block.



An example
2-port RAM



Specify the size 
and width.



How it will be 
clocked.



Which ports are 
latched.



What happens if 
you try to read a 
location that’s 
being written.



Initial values.



Other vendor IP 
libraries needed.



Files to be 
generated.



Dynamic RAM

Requires an FSM 
to refresh 
periodically.
To speed access, 
usually read or 
written in burst 
mode.



Figure B.43a.   NMOS transistor when turned off.
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Figure B.43b.   NMOS transistor when turned on.



Figure B.64.   An SRAM cell.



Figure B.65.   A 2 x 2 array of SRAM cells.



Figure B.72.   A 2m x n read-only memory (ROM) block.



Programmable logic

Historical progression
1. Programmable Logic Arrays (PLAs)
2. Programmable Array Logic (PAL)
3. Complex Programmable Logic Devices 

(CPLDs)
4. Standard cells
5. Today’s FPGAs



Figure B.24.   Programmable logic device as a black box.
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Figure B.25.   General structure of a PLA.



Figure B.26.   Gate-level diagram of a PLA.



Figure B.27.   Customary schematic for the PLA in Figure B.26.



Figure B.28.   An example of a PLA.



Figure B.67.   An example of a NOR-NOR PLA.
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Figure B.68.   Using EEPROM transistors to create a programmable NOR plane.
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Figure B.69.   Programmable version of a NOR-NOR PLA.
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Figure B.70.   A NOR-NOR PLA used for sum-of-
products. f1
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Figure B.71.   PAL programmed to implement two functions in Figure B.70.
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Figure B.29. The 22V10 PAL device.



Figure B.30. The 22V10 macrocell.



Figure B.31.   A PLCC package with socket.
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Figure B.32.   Structure of a complex programmable logic device (CPLD).
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Figure B.33.   A section of the CPLD in Figure B.32.

D Q 

D Q 

D Q 

PAL-like block (details not shown)

PAL-like block



Figure B.34.   CPLD packaging and programming.
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Figure B.40.   A section of two rows in a standard-cell chip.
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Figure B.41.   A sea-of-gates gate array.



Figure B.42.   The logic function f1 = x2x3+x1x3 in the gate array of Figure B.41.
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Figure B.35.   A field-programmable gate array (FPGA).



Figure B.36.   A two-input lookup table (LUT).
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Figure B.37.   A three-input LUT.
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Figure B.38.  Inclusion of a flip-flop in an FPGA logic block.
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Source: https://upload.wikimedia.org/wikipedia/commons/1/1c/FPGA_cell_example.png

https://upload.wikimedia.org/wikipedia/commons/1/1c/FPGA_cell_example.png


Figure B.39.   A section of a programmed FPGA.
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Figure B.73.   Pass-transistor switches in FPGAs.
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