
BEE 271 Digital circuits and systems
Spring 2017

Lecture 14: FSMs, memories, FPGAs

Nicole Hamilton
https://faculty.washington.edu/kd1uj

https://faculty.washington.edu/kd1uj

Memory
Appears in several forms in a hierarchy of performance and capacities
in a modern machine:

1. Individual flip-flops and counters used within a module.

2. Pipeline registers that hold the state of an instruction as it’s
passed from one stage of the processor’s pipeline to the next.

3. Register files, groups of perhaps 16 or 32 registers, each the word
length of the processor (e.g., 32 bits) and available to the
programmer via the instruction set.

4. Cache, typically fast static RAM (i.e., latches) used to buffer data in
and out of main memory.

5. Main memory, typically SDRAM, which stores data as small
electrical charges on tiny capacitors and which must be refreshed
constantly.

6. Non-volatile storage, e.g., hard disk, flash drive.

The classic RISC pipeline

Instruction
fetch

Instruction
decode

Execute Memory Writeback

The classic RISC pipeline

Instruction
fetch

Instruction
decode

Execute Memory Writeback

The tall registers between each stage capture the state of an instruction as it
moves through the pipeline.

The register file

Instruction
fetch

Instruction
decode

Execute Memory Writeback

The register file is accessible to the instruction set.

Register file in the MIPS

31 registers numbered 1 to 31
Register 0 is always 0
Three ports:
1. Read ports for A and B that

continuously report the contents of
registers A and B

2. Write port for C with an enable.

Create a Verilog module that does this.

module RegisterFile(input clock, reset,
input [4:0] regA, regB, output [31:0] Aout, Bout,
input [4:0] regC, input writeC, input [31:0] Cin);

// Three-port register file. Registers A and B are read
// continuously, register C can be written.
// Register 0 is always 0.

reg [31:0] rf[1:31];
assign Aout = regA != 0 ? rf[regA] : 0;
assign Bout = regB != 0 ? rf[regB] : 0;

always @(posedge clock)
if (reset)

begin
integer i;
for (i = 1; i < 32; i = i + 1)

rf[i] <= 0;
end

else
if (writeC && regC != 0)

rf[regC] <= Cin;

endmodule

Instruction and data memories

Instruction
fetch

Instruction
decode

Execute Memory Writeback

The MIPS is a Harvard architecture with separate instruction and data memories.

Static RAM on an FPGA

Created from the
vendor’s “IP
library” using
their tool to
describe what
you want.

Figure B.66. A 2m x n SRAM block.

An example
2-port RAM

Specify the size
and width.

How it will be
clocked.

Which ports are
latched.

What happens if
you try to read a
location that’s
being written.

Initial values.

Other vendor IP
libraries needed.

Files to be
generated.

Dynamic RAM

Requires an FSM
to refresh
periodically.
To speed access,
usually read or
written in burst
mode.

Figure B.43a. NMOS transistor when turned off.

++++++ ++++ ++++++ +++ ++++++
++++++ ++++++ ++++++

+++++++++ +++++++++
+++++++++++ +++++++++++

Drain (type n)Source (type n)

Substrate (type p)

SiO 2

(a) WhenV GS = 0 V, the transistor is off

V
S

0 V =

V
G

0 V =

V
D

++++++

++++++
++++++
++++++

++++++ ++++ +++ ++++++
++++++ ++++++

+++++++++ ++++++++++
+++++++++++ +++++++++++++++++

Channel (type n)

SiO 2

V DD

(b) WhenV GS = 5 V, the transistor is on

++ +++++++

V D 0 V =

V G 5 V =

V S 0 V =

Figure B.43b. NMOS transistor when turned on.

Figure B.64. An SRAM cell.

Figure B.65. A 2 x 2 array of SRAM cells.

Figure B.72. A 2m x n read-only memory (ROM) block.

Programmable logic

Historical progression
1. Programmable Logic Arrays (PLAs)
2. Programmable Array Logic (PAL)
3. Complex Programmable Logic Devices

(CPLDs)
4. Standard cells
5. Today’s FPGAs

Figure B.24. Programmable logic device as a black box.

Logic gates
and

programmable
switches

Inputs

(logic variables)
Outputs

(logic functions)

Figure B.25. General structure of a PLA.

Figure B.26. Gate-level diagram of a PLA.

Figure B.27. Customary schematic for the PLA in Figure B.26.

Figure B.28. An example of a PLA.

Figure B.67. An example of a NOR-NOR PLA.

VDD

VDD

VDD VDD VDD

S1

S2

S3

NOR plane

NOR plane

f1 f2

x1 x2 x3

Figure B.68. Using EEPROM transistors to create a programmable NOR plane.

V DD

V DD

V DD

S 1

S 2

S k

x 1 x 2 x n

=
V e

V e

++++
+++++

+ ++++++ ++++++++ +
(a) Programmable NOR-plane

(b) A programmable switch

(c) EEPROM transistor

Figure B.69. Programmable version of a NOR-NOR PLA.
f1

S 1

S 2

f2

x 1 x 2 x 3 NOR plane

NOR plane

S 3

S 4

x 4

S 5

S 6

V DD

V DD

Figure B.70. A NOR-NOR PLA used for sum-of-
products. f1

P1

P2

f2

x 1 x 2 x3 NOR plane

NOR plane

P3

P4

x 4

P5

P6

VDD

VDD

Figure B.71. PAL programmed to implement two functions in Figure B.70.

f 2

P 1

P 2

x 1 x 2 x 3

NOR plane

P 3

P 4

x 4

P 5

P 6

V DD

f 1

Figure B.29. The 22V10 PAL device.

Figure B.30. The 22V10 macrocell.

Figure B.31. A PLCC package with socket.

Printe
d cir

cuit
boar

d

Figure B.32. Structure of a complex programmable logic device (CPLD).

PAL-like
block

I/O
 b

lo
ck

PAL-like
block

I/O
 block

PAL-like
block

I/O
 b

lo
ck

PAL-like
block

I/O
 block

Interconnection wires

Figure B.33. A section of the CPLD in Figure B.32.

D Q

D Q

D Q

PAL-like block (details not shown)

PAL-like block

Figure B.34. CPLD packaging and programming.

(a) CPLD in a Quad Flat Pack (QFP) package

Printed
circuit board

To computer

(b) JTAG programming

Figure B.40. A section of two rows in a standard-cell chip.

f 1

f 2 x 1

x 3

x 2

Figure B.41. A sea-of-gates gate array.

Figure B.42. The logic function f1 = x2x3+x1x3 in the gate array of Figure B.41.

f 1

x 1

x 3

x 2

Figure B.35. A field-programmable gate array (FPGA).

Figure B.36. A two-input lookup table (LUT).

(a) Circuit for a two-input LUT

x 1

x 2

f

0/1

0/1

0/1

0/1

0
0
1
1

0
1
0
1

1
0
0
1

x 1 x 2

(b) f 1 x 1 x 2 x 1 x 2 + =

(c) Storage cell contents in the LUT

x 1

x 2

1

0

0

1

f 1

f 1

Figure B.37. A three-input LUT.

f

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

x 2

x 3

x 1

Figure B.38. Inclusion of a flip-flop in an FPGA logic block.

Out

D Q

Clock

Select

Flip-flop
In1
In2
In3

LUT

Source: https://upload.wikimedia.org/wikipedia/commons/1/1c/FPGA_cell_example.png

https://upload.wikimedia.org/wikipedia/commons/1/1c/FPGA_cell_example.png

Figure B.39. A section of a programmed FPGA.

0
1
0
0

0
1
1
1

0
0
0
1

x 1

x 2

x 2

x 3

f 1

f 2

f 1 f 2

f

x 1

x 2

x 3 f

Figure B.73. Pass-transistor switches in FPGAs.

1 0

V f 1

V A

0

0
0
0
1

x 1

x 2

f 1

SRAM SRAM SRAM

(to other wires)

	BEE 271 Digital circuits and systems�Spring 2017�Lecture 14: FSMs, memories, FPGAs
	Memory
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Register file in the MIPS
	Slide Number 8
	Slide Number 9
	Static RAM on an FPGA
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Dynamic RAM
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Programmable logic
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52

